• Jordan d’Almeida

Redberry Lake Region Land and Infrastructure Resilience Assessment (LIRA) Project


Redberry lake, Regional Parks of Saskatchewan


RedBerry
.pdf
Download PDF • 3.07MB

Executive Summary



This case study examines Redberry Lake Biosphere Reserve’s (RLBR) Land and Infrastructure Resiliency Assessment (LIRA) project (2010-2013). This case study is part of a broader body of research focused on understanding best management practices in adaptive management specifically regarding water management in Saskatchewan. The findings of the case rely on a qualitative analysis of primary reports and budget documentation, as well as, on personal interviews conducted with key stakeholders in September 2019.


At the time of the project, LIRA was a methodology being proposed by Agriculture and AgriFood Canada (AAFC), as a pilot project to create a national standard for flood management. LIRA is a technology-based decision-making tool. The assessment uses GIS mapping to connect infrastructure, economic, demographic and environmental data. This data is then used in computer models to project the damage costs to infrastructure from extreme run-off events (floods) in the future. The cost of damage is then compared to the cost of a series of upstream adaptations that, theoretically, limit the damage of the flood scenario. If an adaptation cost less than the damage cost, the adaptation is thought to be worthwhile.


RLBR connected with the LIRA unit of AAFC to create a LIRA pilot project in the prairie pothole region. RLBR served as the intermediary organization to receive funding and connect stakeholders. With technical input from the municipalities in the region and funding from several partners, hi-resolution digital elevation maps were created of a portion of the RLBR. The portion covers the towns of Borden and Radisson and part of the Yellowhead Highway 16. Adaptations were developed that, according to LIRA’s modeling, would limit the negative impacts of an extreme run-off event in the area.


Through the interview and literature review process, several themes emerged from this case that can inform future best practices in water management. Findings can be summarized as such:

  • LIRA’s theoretical maps were verified by a real life ERE: Advanced theoretical modeling can be used to support water management decisions and the decision-making process more broadly.

  • Project Champions overcame institutional silos: Champions are essential for navigating complex partnerships and inter-organizational projects and should be identified and empowered.


Limited Implementation: Barriers to implementation need to be addresses early in a project. These include lack of trust between institutions, communication between stakeholders, project design, and funding arrangements.


Introduction


This report will document Redberry Lake Biosphere Reserve’s (RLBR) Land and Infrastructure Resiliency Assessment (LIRA) Project (2010-2013). The project was spearheaded by the RLBR Association, with support from several Government agencies and private contractors and sought to create a pro-active flood management plan for the region which encompasses several rural municipalities, towns and villages. Unlike traditional flood planning, the RLBR flood plan was created using a decision making methodology called LIRA.


The RLBR LIRA project identified three potential adaptations for flood water mitigation based on 25-year projections. Though the project is theoretical and relies on future forecasting and computer modeling for predicting flood events, the project’s models were confirmed in 2013 when an extreme run-off event in the area proved in practice the program’s theoretical flood map correct. Theoretical flood maps created by the computer models matched the actual floods. The extreme run-off event, increases our confidence in the LIRA methodology and the forecasting precision of the computer models.


Qualitative analysis of the project and interview data from key stakeholders provides insight for best management practices. The champions involved in the project were essential for the project’s success. The champions overcame institutional silos and not only connected key stakeholders from diverse fields but also accessed funding and in-kind support from several agencies. The project produced high level and usable mapping data and a reliable flood prevention plan for a portion of the region. Lessons are also gleaned from the project’s pitfalls. The project had trouble implementing the pro-active flood plan. Interview data points to de-incentivizing funding structures for pro-active management and a lack of trust or “buy in” as potential explanations for the implementation issues.


Key Concepts


  • ERE: Extreme Rain (or Runoff) event is a rain or runoff event with technical definitions in the LIRA report - measured as mm of runoff within a time period.

  • LIDAR: Light Detection and Ranging is a precise, laser based technology, used for mapping land elevations. It is more precise than elevation maps created by radar technology which are more common in Canada. Lidar data is collected by aircraft and lidar maps are data dense. Specialists are required to interpret the data and to create the interface between lidar data points and GIS visual maps.

  • PRAIRIE POTHOLE REGION: A geographic region in the Canadian prairie landscape with complex “fill and spill” hydrology. Many watersheds in the region are closed systems and have limited topographical variance.

  • WDPM: Wetland Digital (Elevation Map) Ponding Model is a computer model developed to predict the flow of water in a closed watershed.


Background


Redberry Lake Biosphere Reserve


In January 2000, the United Nations Education, Science and Cultural Organization (UNESCO), designated the RLBR as a biosphere reserve, which is an internationally recognized environmentally protected site (UNESCO, 2015). The closed watershed region is one of 18 designated biospheres in Canada. Unlike other lakes in Saskatchewan, Redberry lake is saline and creates unique biodiversity in the Province. The region is also a designated bird sanctuary that protects over 180 species of birds (Prairie Wild Consulting Co, 2010). The area is home to some of the most unique and diverse landscape and wildlife in Saskatchewan, as well as Canada (Prairie Wild Consulting Co, 2010).


The RLBR covers an area of 1122 km², is home to approximately 4,432 inhabitants and includes municipalities, villages, towns and First Nation Reserves (Agriculture and Agri-food Canada [AAFC], 2013). These include the Rural Municipality of Great Bend No. 405, Rural Municipality of Meeting Lake No. 466, Rural Municipality of Douglas No. 436, Town of Hafford, Town of Radisson, Village of Borden, Village of Maymont, Village of Speers and Village of Richard (Map 1) and major highways include Yellowhead Highway 16 (Map2).


Map 1- Redberry Planning District Source- Prarie Wildlife Consulting, 2010)

Map 2- Location Map of Redberry Reserve with various towns and municipalities with Yellowhead Highway 16 Source - Esri ArcGIS, 2021


The population of Redberry has changed from 461 to 342 between 2001 to 2016. Figure 1 shows the population in the Reddbery Lake Region.


Figure 1- Population of Redberry Source- Statscan, 2017

Like many rural regions in Saskatchewan, the RLBR saw a depopulation of 6.8% from 2001 to 2006 (Statistics Canada. 2017). However, after 2006, the Province as a whole experienced greater than usual population growth. As the provincial growth rates continue, the region could expect 2% annual growth rate (Prairie Wild Consulting Co. 2010). The Redberry Lake Biosphere Reserve area has seen population decline over the past years, as has been the trend for rural, predominantly agricultural areas. However, due to recent surges of growth in the province and a movement into satellite communities located next to Saskatchewan’s larger cities, the area has started to experience growth once more in population and increase in development – residential and commercial. Despite the modest projections for population growth, the RLBR is an ageing population. The largest population group is between 40 and 69 years of age.


The average household income in the region lies in the 150K bracket (Figure 2).


Figure 2- Household Income Source- StatsCan, 2021

Of the total population in the Redberry Lake Region, 7.4% identified as having an Aboriginal identity on the 2006 Census, a trend that also reflected across the SK where rural areas have low Aboriginal populations as these populations are mostly on reserves. The Redberry Lake Biosphere Reserve includes within its area a number of Treaty lands, namely the Lucky Man Cree Nation. In term of language and diversity, RLBR’s 82.4% of the population identified English as their Mother Tongue, 3.7% identified French as their mother tongue and 13.9% said their mother tongue was something other than English of French (Prarie Wild Consulting, 2010).


The population in the Redberry Lake Region of 15 and over totals 3495 residents out of which 2350 (67.2%) are in the labour force. 94.7% of the labour force is employed, which makes the unemployment rate comparable to the Saskatchwewan provincial average of 5.1%. Of all employed labour force members. Figure 3 displays the Redberry Lake Region labour force by industry of employment and shows that agriculture and public administration occupy the highest labor force.


Figure 3- Labor Force by Industry Source-Statscan, 2017

The region’s economic activity revolves around primary industry, especially agriculture and resources. Over 40% of residents are employed in the agriculture and resource sector, 16% in sales and service and 15% in trades, transport and equipment operators. (Prairie Wild Consulting Co. 2010). Agriculture and resources is shown to be the top industry by an overwhelming margin, at 42.4%. The next top industries are business services (9.2%), healthcare and social services (8.6%) and other services (8.2%). This trend matches closely the other municipalities in the North West Enterprise Region.


The top occupations in the Redberry Lake Region were primary industry that includes agriculture and resources at 40.8%, sales and service (15.9%) and trades, transport and equipment operators (15.2%). Considering the population differences between rural and urban centres the only occupation that stands out is the majority of rural residents involved in primary industry (Prairie Consulting 2010).


In 2006, the median family income of some of towns was 38786 (RM of Redberry) and 37027 (Town of Halford) with the RM of Meeting Lake lowest and the Town of Radisson being the highest. while for the province of Saskatchewan was $58563, placing all of the communities in the Redberry Lake Region below the provincial average. The average percentage of residents considered low income after tax in the area was 8.7%, with a range from 0 to 18.8%.


Although the RLBR encompasses several municipalities and agricultural areas. because of cost and time constraints of the project, only a portion of the RLBR was mapped with LIDAR technology for LIRA.


The area around the towns of Radisson and Borden as well as a portion of the Yellowhead Highway 16 was surveyed with high resolution digital imaging.


Land Infrastructure and Resiliency Assesment (LIRA)


LIRA was developed by Dr. Harvey Hill in his role as Manager with the National Agro-climate Information Service, Science and Technology Branch of Agriculture and Agri-Food Canada(Hill, personal correspondence, 2019). The methodology developed out of a need for decision makers to be able to calculate and understand the cost and benefit of long-term investments into pro-active flood management (AAFC, 2013). Mr. Hill was interested in creating a national standard for pro-active flood planning and developed the LIRA model to build resiliency into systems in the face of natural disaster.


Figure 4: Basic comparative process (Agriculture and Agri-food Canada. 2013. P70)

The key innovation of the LIRA model is its computer based economic analysis. LIRA uses computer modeling to compare the cost of the baseline (status quo) with the cost and benefit of adaptations. It can give stakeholders a prioritized matrix of possible adaptations with each adaptation’s cost and benefit over a desired timespan. LIRA gives decision makers a data driven tool to make informed decisions about future risk and an ability to optimize investment levels. LIRA can determine if the cost of an adaptation will be greater or less than the economic benefit of the adaptation (Figure 4). By 2010 there had been at least two LIRA projects conducted in Canada- one in Nova Scotia and the other in Assiniboine River Watershed. Each project identified adaptations based on the specific landscape of the region. The prairie pothole region, however, is a hydrologically unique region (Pomeroy et al., 2013) and required a separate pilot project to prove the effectiveness of LIRA methodology.


Harvey Hill made a presentation to the Saskatchewan Association of Watersheds (SAW) which is Saskatchewan’s regulatory body for water management. He was looking for a pilot project to test LIRA in the Prairie Pothole Region (J. Kindrachuck, personal communication, 2019). John Kindrachuck was present at the SAW meeting as a representative of the North Saskatchewan Watershed. Although no watershed per se was identified at the meeting as a suitable host for a LIRA project, John Kindrachuck, who was also the director of the Redberry Lake Biosphere Reserve (RLBR) Association identified the biosphere as a potential pilot study location. The RLBR was in the process of conducting regional planning at the time of the meeting and was also a closed watershed. This made the region a prime candidate to host a LIRA project.


Organization and Funding


Funding for the project came from both in-kind contributions and direct financial contributions- $1,227,000.00 over three years of total in-kind and cash funding (Appendix 1). Major financial contributors include, AAFC, Western Economic Diversification Canada, Enterprise Saskatchewan, Federation of Municipalities, and the Saskatchewan Association of Watersheds. From 2010 to 2013, CAD $705,000.00 in direct funding was provided for the project (Appendix 1). The RLBR Association served as the umbrella organization, connecting all the separate funders and stakeholders (Figure 5).

Figure 5: RLBR LIRA Project Funding Flow Chart (Created by author)

AAFC contributed CAD $200,000.00 to the LIRA project though the Community Development Program (Rural Secretariat Funding). Though now expired, the program was designed to help rural communities get access to information, develop expertise and to respond to rural challenges (AAFC. 2019). Western Economic Diversification Canada contributed $250,000.00 based on its mandate to promote the economic development of Western Canada. Enterprise Saskatchewan contributed $200,000.00 and Federation of Municipalities, and the Saskatchewan Association of Watersheds provided the remaining $55,000.00 (Figure 5).


In-kind contributions to the project accounted for $522,000.00 of funding (Appendix 1). Several agencies were involved in in-kind contributions for the project (Table 1).

Table 1: In-kind Contributions Source: Author

A sizeable portion of the project expenses was covered by in-kind contributions, however, major cash expenditures included paying consultants and professional fees. Vemax Management, Prairie Wild Consulting and a LIDAR contractor, were hired to provide expertise to the project. Although the budget document (Appendix 1) reports in gross numbers and does not directly state how much each contractor was paid, interview data from R4 confirmed that major cash expenses were paid to consultants (R4, personal interview, 2019).


The LIRA Methodology is described below (Figure 6).


Figure 6: LIRA Project Steps. (Agriculture and Agri-food Canada, 2013, p.31)

LIRA methodology is based on five steps. Step one defines the baseline. To do this, specialist determine the trajectory of the social, economic, and environmental status quo for the region. Data from municipalities and local associations were compiled along with economic, social and environmental indicators (AAFC, 2013, p.32). AAFC, RLBR and Prairie Wild Consulting Inc. consolidated map data from several sources to create GIS maps of land use, topography, parcel fabric, transportation, residences, and economic data (AAFC, 2013, p. 45). These data-rich maps were used to create a baseline projection. The baseline projection does not only look at environmental changes, but also population changes and economic growth for the region. The baseline forecasted what the region in general would look like in 25 years and the cost to the region due to flood events.


Once the baselines were established, the project moved to phase two. Using data from Environment Canada, baseline water depths were selected and extreme run-off events were defined as 100mm and 300mm events (AAFC, 2013, p.53). One important limitation to the hydrological modeling is that the model did not account for ground moisture levels. The model assumes that no rain or run-off will soak into the ground.


Because of the relatively flat landscape of the RLBR, the precision of the elevation map was a limiting factor for the model’s accuracy. The majority of the RLBR had elevation data from SRTM V3 technology (AAFC, 2013, p.67). This technology is based on radar but had several limitations because of the relatively low resolution of the imaging. LIDAR mapping can create an accurate map with less than 15cm of variance (Webster, 2012). This the higher resolution map gives a more accurate reading of the ground level variance. This is important especially on the prairies, because of the relatively low variance in the landscape and the fill and spill hydrology. LIDAR, however, is expensive. At the time of the project, it cost about $200-$500/ sqkm (Webster, 2012, p.73). Consequently, only a subsection of the biosphere was selected for LIDAR mapping. Radisson and Borden and the Yellowhead Highway 16 were selected for LIDAR mapping and therefore the adaptation options were restricted to that area and not provided for the entire RLBR.


The community engagement was brought in by holding town hall meetings. These meetings were held to verify the baseline flood maps against local knowledge of past floods. The theoretical maps were largely confirmed by local knowledge (R3, personal interview, 2019). Town hall meetings were also used to understand possible adaptations to eliminate the risks of future floods.


Steps three and four has to do with evaluating the cost of the baseline against the cost of adaptations in the occurrence of different levels of ERE . The model calculates the likelihood of several EREs, and the respective damage costs these events would have. The nature of the computer model allows researchers to “roll the dice” and observe the cost of flooding in thousands of scenarios (R5, personal interview, 2019).


Three adaptations were simulated using the Wetland Digital (Elevation Map) Ponding Model with varying results. The first adaptation option (AO1) included building a retention pond, a dyke to divert the flow of floodwaters, and a drainage ditch. The economic outcomes of a matrix of variables were calculated. The matrix includes; 1-in-25 to 1-in-100 years ERE; and the reduction in flooding due to the adaptation option from 50% reduction up to 100% reduction. In some scenarios the cost of AO1 was greater than the baseline and in other cases the opposite.


Adaptation option 2 (AO2) was the most promising and had to do with zoning and future planning. New building plans would not permit high value buildings to be built on high-risk flood zones. The model predicted this scenario to be the most cost effective and showed positive returns for all variable combinations. Finally, adaptation option 3 (AO3) looked at clearing a natural creek to increase the flow of floodwaters. AO3 was demonstrably the most inefficient. It scored a net loss in all variable combinations.


With this data in hand, stakeholders could move onto phase 5 of the LIRA project: reach informed decisions. If the model was right, stakeholders could see what options where the most effective and make better decisions. If the cost of the adaptation was less than the base cost, the adaptation is thought to be worthwhile. If the adaptation is more expensive than the base cost, decision makers should avoid that adaptation.


The RLBR LIRA project required the cooperation and partnership of several stakeholders. Grant monies were used to hire a private contractor to survey the designated area and produce the raw data points for the elevation map. That data was then prepared into a GIS map by inkind work from the Science and Technology Branch of AAFC. Municipalities, Water Security Agency and other local agencies provided local knowledge of possible adaptations and also the RMs provided land use maps for the project. Vemax Management Inc. was responsible for consolidating the map data and running the simulations and analysis. The computer hydrology model was provided by the University of Saskatchewan. Once the simulations had been run the report was given to Prairie Wild Consulting who produced the Final LIRA report for the RLBR (Figure 7).

Figure 7: LIRA Project Flow Chart. (Created by author)

In May 2013, less than a year from the completion of the project. Radisson and Borden suffered an ERE and declared a state of emergency (AAFC, 2013, p. 21). This event proved the accuracy of the GIS mapping as predicted flood maps matched real life flood maps with a high level of accuracy. This confirmation lends a greater degree of confidence in the mapping process and the recommendations of the LIRA project.


Methodology


The LIRA project was selected as a “success story” for water management by the Implementing Community Citizen Engaged Best Management Practices through Adaptive Management Project research team.Detailed research for this case study started in June 2019 and consisted of reviews of agency reports, technical papers, budget documents, and presentations. Phone call and email correspondence from key project implementers clarified information and filled gaps in the documentation. A series of interviews with government officials, elected officials and private contractors were also conducted. Qualitative evaluation of the interviews and literature are the basis for the conclusions and discussion at the end of this report.


The Research Process


Five interviews were conducted for this case study. The interviews were selected to capture the perspective of major partners in the project. Interview questions were designed to understand the specific roles of each partner and their experience working in the project. The interviews were conducted over the phone in July to September 2019 (Table 2).

Table 2: Interviewees Source: Author

Findings


Mandate and Motivation


The RLBR LIRA project brought together the work and expertise of several stakeholders, each with unique mandates. Each stakeholder had a specific motivation for being part of the project and expected to benefit in some way. The RLBR Association’s motivation for LIRA was to be able to tap into the federal financing for a high-quality flood plan that they were developing as part of a regional plan which would include a risk assessment and flood plan.


Those involved in creating the LIRA methodology had a different motivation. For instance, the LIRA developers wanted to establish a government-wide standard for flood management. From the LIRA perspective, RLBR was an opportunity to prove the methodology in the prairie pothole region and a step towards LIRA become a national standard.


Funding agencies also had a mandate to invest in the project. Some funders had a mandate to develop the region economically and others had a mandate to mitigate the negative effects of climate variability. All these different mandates had to be brought together for the project to be successful.


Champions


The RLBR project was an integrated project with many stakeholders who had overlapping but different mandates. Consequently, leadership was essential to bring many moving parts together. As R1 noted, “...it takes the right kind of leadership to know how to extract the juice out of something like that” (R1, personal interview, 2019). The RLBR pilot project illustrates the importance of champions especially for innovative or novel projects like LIRA.


The funding for the project was not statutory. No funding existed for the express purpose of doing a LIRA project. Though funding was available through different government agencies, without a champion to find the grants and in-kind contributions the project would not have started. The resources for the project were available in the system. The expertise, through AAFC existed, but it was the project champions that brought it all together.


R1 elaborated on this idea, stating that “the institution is trapped by the mandate it’s got” (R1, personal interview, 2019). That is, in a bureaucratic setting, resources can be trapped in the silo of an agency’s mandate. If an agency has mandate for agriculture, it may not be able to support a program for infrastructure, even though infrastructure is a key component of the former. R5 suggest that the right leadership and organizational nimbleness is essential for people to work across jurisdictional boundaries (R1, personal interview, 2019).


Decisions and Consultations


The LIRA project requires a high degree of technical understanding. Consequently, may of the decisions made in the project were made by professionals and experts who could understand the data. The bulk of the work was conducted by experts from AAFC and private contractors (R4, personal interview, 2019). However, effort was made to hold public meetings to capture local knowledge. The RMs provided local knowledge and land maps. Public meetings confirmed the accuracy of the theoretical flood maps (R2, personal interview, 2019). Public input was also considered in the adaptation scenarios, and to identify Radisson and Borden as an important economic area. These meetings were conducted through the municipalities and the RLBR association.


Barriers


Some of the barriers identified in the interview process had to do with the highly technical nature of the project, the funding structure of municipalities and limits to data for indirect outcomes. The technical nature of the project limited the community involvement in the project and added pressure to the experts from AAFC to interpret the dense data (R2, personal interview, 2019). There was limited organizational capacity in the RLBR Association to understand and process the highly technical project and they had to rely on the in-kind support from AAFC and hire private contractors to complete the analysis. The technical capacity of the host organization can be a barrier for a LIRA project.


R4 identified the current funding structures as a serious barrier for implementation. Although decision makers in the municipalities understand that up-stream investment into flood management could save money over time, political pressures limit the pro-active investment an elected official can make. This problem is compounded by the negative incentive of receiving insurance or emergency funding in times of crisis. If a municipality is pro-active, it is responsible for the cost of the entire project. If there is a major flood causing damage, other levels of government pay a portion of the bill through emergency funding and insurance payment. This funding structure de-incentivizes pro-active adaptations for municipalities. R4 states the problem like this, “Do you want to spend the money now or later?.And if you don’t have the money now when it’s all coming out of your pocket...you spend it later when you might get 50% covered by the government or insurance” (R4, personal interview, 2019).


There were also some technical limitations identified in the interview process. LIRA methodology is only as good as the data put into the model. R1 identified that traffic data was not included in modeling and consequently, the models could only predict the direct outcomes of a flood scenario (R1, personal interview, 2019). Access to data is a limiting factor for the LIRA methodology.


Implementation


The LIRA project was part of a RLBR’s community planning and was included in the region’s future plan. However, interview evidence suggests that there is a disconnect between the LIRA methodology for decision making and the de facto decision-making process. The elected official interviewed indicated that Water Survey of Canada (WSC), not LIRA, was their primary source for water information and planning data. Although the LIRA report and elevation maps are still on file and used for reference, the recommendations of the report were not implemented.


The official, who was active at community meetings and the flood response in 2013 was unaware of LIRA’s cost/ benefit analysis. When asked if the LIRA report had made it to the council meeting for implementation the official responded, “ ..about implementation, I’m not sure what you mean. But to this day they’re still on file” (R3, personal interview, 2019). R3 understood the LIRA project simply as the production of digital elevation maps and not as a cost benefit analysis tool. When asked what the official remembered about the project R3 responded, “Well I mean it kind of shows 3D elevations - essentially planning and determining what floodplains are, where water is going to rise - just extra information. I still don’t think it’s a total substitute for the boots on the ground data from what I’ve seen” (R3, personal interview, 2019).


The main goal of LIRA methodology, to inform decision, appears not to have received “buy in” from those making the real time decision. The official was unaware of any adaptations provided in the LIRA report and the decision makers intended to proceed with water management policies not verified by LIRA’s methodology:

"I’m not sure what options were put forward. Other than at one point, we looked at doing a bypass for the village of Borden that would take the water from Shepherd’s Creek and kind of get around the village and at a high watermark.We requested government help for that project and were turned down. So, nothing has happened. There was drawings done. Some preliminary drawings and design work done but that’s as far as it ever went”. (R3, personal interview 2019)

National Standards and the Future of LIRA


At the time of the RLBR project there were many factors supporting LIRA as a national standard. LIRA developers were given latitude within their roles in AAFC to develop the new project, motivated champions were able to work across sectoral boundaries and bring together the right expertise and AAFC carried a mandate to support the development of a national standard (R1, personal interview 2019). Unfortunately, a change in policy changed the mandate of the AAFC and the champions were not given the resources to continue LIRA as a government program.

“Workforce adjustment” limited the ability of the government to continue with LIRA, “...there was not too many internal champions because the unit was no longer functioning any more....” (R2, personal interview 2019). Without champions LIRA did not continue as a government project.


There are, however, some vestiges of LIRA. Atana Management (formerly Vemax) is a private sector firm and can be contracted by municipalities. The firm uses the publicly available models used by LIRA and helps municipalities make flood-risk and financial decisions: It is remarkably easy to spend a lot of money to gain very little. And what we are trying to avoid is, we are trying to avoid a community going out there and spending 5 million on a retention and draining system only to have expected savings of $100,000. (R5, personal interview 2019)


The North Saskatchewan Watershed has picked up on the idea of pro-active adaptations and is now offering a culvert maintenance program. The program consists of locating and verifying culverts sizes in a municipality. Expertise and capacity developed in the LIRA project made this program possible (R4, personal interview 2019). Furthermore, there is interest by an insurance company to fund another LIRA project (R4, personal interview 2019). Insurers have a vested interest in protecting assets that they insure and may provide a new stream of funding for future projects.


Finally, interview data also identified several agencies that may be good candidates and have a mandate to carry LIRA into the future. R1 identified Public Safety as a potential agency. To R1, Emergency management agencies have dedicated personnel, expertise and money and may be the best to implement a national standard (R1, personal interview 2019). In Saskatchewan, the Water Security Agency (WSA) was identified by both R3 and R4 as an agency that could implement LIRA as a standard. WSA is a trusted source of water management expertise in the Province.


Discussion


The goal of this case study is to understand the RLBR LIRA project and learn lessons to inform best practices for water management. The project had several successes. The data the project produced was robust and confirmed by a subsequent flood event. The project champions were able to navigate complex funding and organizational structures and to unite several stakeholders. The project used new technology to increase the decision-making capacity of local government and decision makers. These lessons can all be part of best practices. The project also had some limitations. The LIRA methodology was not relevant to the local municipal decision makers and LIRA’s adaptations were not implemented. There are also lessons to be learned concerning the communication of technical projects to a skeptical or non-technical population. Finally, because LIRA was developed and sustained by government funding, changes in government priorities limited the longevity of the program.


One notable success of the project is that the theoretical model used to forecast several years into the future was proven accurate. Aerial photos and witnesses confirmed that the maps were accurate. Planning for the future is difficult in the best of cases but the LIRA methodology increases the decision maker’s ability to use data and to make informed decisions in the face of uncertainty.


The innovators of the project were willing to partner with other groups and agencies to make the project possible. The energy to